

dataset: databases for lazy people

Although managing data in relational database has plenty of benefits, they’re
rarely used in day-to-day work with small to medium scale datasets. But why is
that? Why do we see an awful lot of data stored in static files in CSV or JSON
format, even though they are hard to query and update incrementally?

The answer is that programmers are lazy, and thus they tend to prefer the
easiest solution they find. And in Python, a database isn’t the simplest
solution for storing a bunch of structured data. This is what dataset is
going to change!

dataset provides a simple abstraction layer removes most direct SQL
statements without the necessity for a full ORM model - essentially, databases
can be used like a JSON file or NoSQL store.

A simple data loading script using dataset might look like this:

import dataset

db = dataset.connect('sqlite:///:memory:')

table = db['sometable']
table.insert(dict(name='John Doe', age=37))
table.insert(dict(name='Jane Doe', age=34, gender='female'))

john = table.find_one(name='John Doe')

Here is similar code, without dataset [https://gist.github.com/gka/5296492].

Features

	Automatic schema: If a table or column is written that does not
exist in the database, it will be created automatically.

	Upserts: Records are either created or updated, depending on
whether an existing version can be found.

	Query helpers for simple queries such as all rows in a table or
all distinct values across a set of columns.

	Compatibility: Being built on top of SQLAlchemy [http://www.sqlalchemy.org/], dataset works with all major databases, such as SQLite, PostgreSQL and MySQL.

Contents

	Installation Guide

	Quickstart
	Connecting to a database

	Storing data

	Using Transactions

	Inspecting databases and tables

	Reading data from tables

	Running custom SQL queries

	API documentation
	Connecting

	Notes

	Database

	Table

	Data Export

Contributors

dataset is written and maintained by Friedrich Lindenberg [https://github.com/pudo],
Gregor Aisch [https://github.com/gka] and Stefan Wehrmeyer [https://github.com/stefanw].
Its code is largely based on the preceding libraries sqlaload [https://github.com/okfn/sqlaload]
and datafreeze. And of course, we’re standing on the shoulders of giants [http://www.sqlalchemy.org/].

Our cute little naked mole rat [http://www.youtube.com/watch?feature=player_detailpage&v=A5DcOEzW1wA#t=14s] was drawn by Johannes Koch [http://chechuchape.com/].

Installation Guide

The easiest way is to install dataset from the Python Package Index [https://pypi.python.org/pypi/dataset/] using pip or easy_install:

$ pip install dataset

To install it manually simply download the repository from Github:

$ git clone git://github.com/pudo/dataset.git
$ cd dataset/
$ python setup.py install

Depending on the type of database backend, you may also need to install a
database specific driver package. For MySQL, this is MySQLdb, for Postgres
its psycopg2. SQLite support is integrated into Python.

Quickstart

Hi, welcome to the twelve-minute quick-start tutorial.

Connecting to a database

At first you need to import the dataset package :)

import dataset

To connect to a database you need to identify it by its URL [http://docs.sqlalchemy.org/en/latest/core/engines.html#engine-creation-api], which basically is a string of the form "dialect://user:password@host/dbname". Here are a few examples for different database backends:

connecting to a SQLite database
db = dataset.connect('sqlite:///mydatabase.db')

connecting to a MySQL database with user and password
db = dataset.connect('mysql://user:password@localhost/mydatabase')

connecting to a PostgreSQL database
db = dataset.connect('postgresql://scott:tiger@localhost:5432/mydatabase')

It is also possible to define the URL as an environment variable called DATABASE_URL
so you can initialize database connection without explicitly passing an URL:

db = dataset.connect()

Depending on which database you’re using, you may also have to install
the database bindings to support that database. SQLite is included in
the Python core, but PostgreSQL requires psycopg2 to be installed.
MySQL can be enabled by installing the mysql-db drivers.

Storing data

To store some data you need to get a reference to a table. You don’t need
to worry about whether the table already exists or not, since dataset
will create it automatically:

get a reference to the table 'user'
table = db['user']

Now storing data in a table is a matter of a single function call. Just
pass a dict [http://docs.python.org/2/library/stdtypes.html#dict] to insert. Note that you don’t need to create the columns
name and age – dataset will do this automatically:

Insert a new record.
table.insert(dict(name='John Doe', age=46, country='China'))

dataset will create "missing" columns any time you insert a dict with an unknown key
table.insert(dict(name='Jane Doe', age=37, country='France', gender='female'))

Updating existing entries is easy, too:

table.update(dict(name='John Doe', age=47), ['name'])

The list of filter columns given as the second argument filter using the
values in the first column. If you don’t want to update over a
particular value, just use the auto-generated id column.

Using Transactions

You can group a set of database updates in a transaction. In that case, all updates
are committed at once or, in case of exception, all of them are reverted. Transactions
are supported through a context manager, so they can be used through a with
statement:

with dataset.connect() as tx:
 tx['user'].insert(dict(name='John Doe', age=46, country='China'))

You can get same functionality by invoking the methods begin(),
commit() and rollback()
explicitly:

db = dataset.connect()
db.begin()
try:
 db['user'].insert(dict(name='John Doe', age=46, country='China'))
 db.commit()
except:
 db.rollback()

Nested transactions are supported too:

db = dataset.connect()
with db as tx1:
 tx1['user'].insert(dict(name='John Doe', age=46, country='China'))
 with db as tx2:
 tx2['user'].insert(dict(name='Jane Doe', age=37, country='France', gender='female'))

Inspecting databases and tables

When dealing with unknown databases we might want to check their structure
first. To start exploring, let’s find out what tables are stored in the
database:

>>> print(db.tables)
[u'user']

Now, let’s list all columns available in the table user:

>>> print(db['user'].columns)
[u'id', u'country', u'age', u'name', u'gender']

Using len() we can get the total number of rows in a table:

>>> print(len(db['user']))
2

Reading data from tables

Now let’s get some real data out of the table:

users = db['user'].all()

If we simply want to iterate over all rows in a table, we can omit all():

for user in db['user']:
 print(user['age'])

We can search for specific entries using find() and
find_one():

All users from China
chinese_users = table.find(country='China')

Get a specific user
john = table.find_one(name='John Doe')

Find by comparison
elderly_users = table.find(table.table.columns.age >= 70)

Using distinct() we can grab a set of rows
with unique values in one or more columns:

Get one user per country
db['user'].distinct('country')

Finally, you can use the row_type parameter to choose the data type in which
results will be returned:

import dataset
from stuf import stuf

db = dataset.connect('sqlite:///mydatabase.db', row_type=stuf)

Now contents will be returned in stuf objects (basically, dict
objects whose elements can be acessed as attributes (item.name) as well as
by index (item['name']).

Running custom SQL queries

Of course the main reason you’re using a database is that you want to
use the full power of SQL queries. Here’s how you run them with dataset:

result = db.query('SELECT country, COUNT(*) c FROM user GROUP BY country')
for row in result:
 print(row['country'], row['c'])

The query() method can also be used to
access the underlying SQLAlchemy core API [http://docs.sqlalchemy.org/en/latest/orm/query.html#the-query-object], which allows for the
programmatic construction of more complex queries:

table = db['user'].table
statement = table.select(table.c.name.like('%John%'))
result = db.query(statement)

API documentation

Connecting

	
dataset.connect(url=None, schema=None, reflect_metadata=True, engine_kwargs=None, reflect_views=True, ensure_schema=True, row_type=<class 'collections.OrderedDict'>)

	Opens a new connection to a database.

url can be any valid SQLAlchemy engine URL [http://docs.sqlalchemy.org/en/latest/core/engines.html#sqlalchemy.create_engine]. If url is not defined
it will try to use DATABASE_URL from environment variable. Returns an
instance of Database. Set reflect_metadata
to False if you don’t want the entire database schema to be pre-loaded.
This significantly speeds up connecting to large databases with lots of
tables. reflect_views can be set to False if you don’t want views to be
loaded. Additionally, engine_kwargs will be directly passed to
SQLAlchemy, e.g. set engine_kwargs={‘pool_recycle’: 3600} will avoid DB
connection timeout [http://docs.sqlalchemy.org/en/latest/core/pooling.html#setting-pool-recycle]. Set row_type to an alternate dict-like class to
change the type of container rows are stored in.:

db = dataset.connect('sqlite:///factbook.db')

Notes

	dataset uses SQLAlchemy connection pooling when connecting to the
database. There is no way of explicitly clearing or shutting down the
connections, other than having the dataset instance garbage collected.

Database

	
class dataset.Database(url, schema=None, reflect_metadata=True, engine_kwargs=None, reflect_views=True, ensure_schema=True, row_type=<class 'collections.OrderedDict'>)

	A database object represents a SQL database with multiple tables.

	
begin()

	Enter a transaction explicitly.

No data will be written until the transaction has been committed.

	
commit()

	Commit the current transaction.

Make all statements executed since the transaction was begun permanent.

	
create_table(table_name, primary_id=None, primary_type=None)

	Create a new table.

Either loads a table or creates it if it doesn’t exist yet. You can
define the name and type of the primary key field, if a new table is to
be created. The default is to create an auto-incrementing integer,
id. You can also set the primary key to be a string or big integer.
The caller will be responsible for the uniqueness of primary_id if
it is defined as a text type.

Returns a Table instance.

table = db.create_table('population')

custom id and type
table2 = db.create_table('population2', 'age')
table3 = db.create_table('population3',
 primary_id='city',
 primary_type=db.types.text)
custom length of String
table4 = db.create_table('population4',
 primary_id='city',
 primary_type=db.types.string(25))
no primary key
table5 = db.create_table('population5',
 primary_id=False)

	
get_table(table_name, primary_id=None, primary_type=None)

	Load or create a table.

This is now the same as create_table.

table = db.get_table('population')
you can also use the short-hand syntax:
table = db['population']

	
load_table(table_name)

	Load a table.

This will fail if the tables does not already exist in the database. If
the table exists, its columns will be reflected and are available on
the Table object.

Returns a Table instance.

table = db.load_table('population')

	
query(query, *args, **kwargs)

	Run a statement on the database directly.

Allows for the execution of arbitrary read/write queries. A query can
either be a plain text string, or a SQLAlchemy expression [http://docs.sqlalchemy.org/en/latest/core/tutorial.html#selecting].
If a plain string is passed in, it will be converted to an expression
automatically.

Further positional and keyword arguments will be used for parameter
binding. To include a positional argument in your query, use question
marks in the query (i.e. SELECT * FROM tbl WHERE a = ?`). For
keyword arguments, use a bind parameter (i.e. SELECT * FROM tbl
WHERE a = :foo).

statement = 'SELECT user, COUNT(*) c FROM photos GROUP BY user'
for row in db.query(statement):
 print(row['user'], row['c'])

The returned iterator will yield each result sequentially.

	
rollback()

	Roll back the current transaction.

Discard all statements executed since the transaction was begun.

	
tables

	Get a listing of all tables that exist in the database.

Table

	
class dataset.Table(database, table_name, primary_id=None, primary_type=None, auto_create=False)

	Represents a table in a database and exposes common operations.

	
all(*_clauses, **kwargs)

	Perform a simple search on the table.

Simply pass keyword arguments as filter.

results = table.find(country='France')
results = table.find(country='France', year=1980)

Using _limit:

just return the first 10 rows
results = table.find(country='France', _limit=10)

You can sort the results by single or multiple columns. Append a minus
sign to the column name for descending order:

sort results by a column 'year'
results = table.find(country='France', order_by='year')
return all rows sorted by multiple columns (descending by year)
results = table.find(order_by=['country', '-year'])

To perform complex queries with advanced filters or to perform
aggregation, use db.query()
instead.

	
columns

	Get a listing of all columns that exist in the table.

	
count(*_clauses, **kwargs)

	Return the count of results for the given filter set.

	
create_column(name, type)

	Create a new column name of a specified type.

table.create_column('created_at', db.types.datetime)

	
create_index(columns, name=None, **kw)

	Create an index to speed up queries on a table.

If no name is given a random name is created.

table.create_index(['name', 'country'])

	
delete(*clauses, **filters)

	Delete rows from the table.

Keyword arguments can be used to add column-based filters. The filter
criterion will always be equality:

table.delete(place='Berlin')

If no arguments are given, all records are deleted.

	
distinct(*args, **_filter)

	Return all the unique (distinct) values for the given columns.

returns only one row per year, ignoring the rest
table.distinct('year')
works with multiple columns, too
table.distinct('year', 'country')
you can also combine this with a filter
table.distinct('year', country='China')

	
drop()

	Drop the table from the database.

Deletes both the schema and all the contents within it.

	
drop_column(name)

	Drop the column name.

table.drop_column('created_at')

	
find(*_clauses, **kwargs)

	Perform a simple search on the table.

Simply pass keyword arguments as filter.

results = table.find(country='France')
results = table.find(country='France', year=1980)

Using _limit:

just return the first 10 rows
results = table.find(country='France', _limit=10)

You can sort the results by single or multiple columns. Append a minus
sign to the column name for descending order:

sort results by a column 'year'
results = table.find(country='France', order_by='year')
return all rows sorted by multiple columns (descending by year)
results = table.find(order_by=['country', '-year'])

To perform complex queries with advanced filters or to perform
aggregation, use db.query()
instead.

	
find_one(*args, **kwargs)

	Get a single result from the table.

Works just like find() but returns one
result, or None.

row = table.find_one(country='United States')

	
insert(row, ensure=None, types=None)

	Add a row dict by inserting it into the table.

If ensure is set, any of the keys of the row are not
table columns, they will be created automatically.

During column creation, types will be checked for a key
matching the name of a column to be created, and the given
SQLAlchemy column type will be used. Otherwise, the type is
guessed from the row value, defaulting to a simple unicode
field.

data = dict(title='I am a banana!')
table.insert(data)

Returns the inserted row’s primary key.

	
insert_ignore(row, keys, ensure=None, types=None)

	Add a row dict into the table if the row does not exist.

If rows with matching keys exist they will be added to the table.

Setting ensure results in automatically creating missing columns,
i.e., keys of the row are not table columns.

During column creation, types will be checked for a key
matching the name of a column to be created, and the given
SQLAlchemy column type will be used. Otherwise, the type is
guessed from the row value, defaulting to a simple unicode
field.

data = dict(id=10, title='I am a banana!')
table.insert_ignore(data, ['id'])

	
insert_many(rows, chunk_size=1000, ensure=None, types=None)

	Add many rows at a time.

This is significantly faster than adding them one by one. Per default
the rows are processed in chunks of 1000 per commit, unless you specify
a different chunk_size.

See insert() for details on
the other parameters.

rows = [dict(name='Dolly')] * 10000
table.insert_many(rows)

	
update(row, keys, ensure=None, types=None, return_count=False)

	Update a row in the table.

The update is managed via the set of column names stated in keys:
they will be used as filters for the data to be updated, using the
values in row.

update all entries with id matching 10, setting their title columns
data = dict(id=10, title='I am a banana!')
table.update(data, ['id'])

If keys in row update columns not present in the table, they will
be created based on the settings of ensure and types, matching
the behavior of insert().

	
upsert(row, keys, ensure=None, types=None)

	An UPSERT is a smart combination of insert and update.

If rows with matching keys exist they will be updated, otherwise a
new row is inserted in the table.

data = dict(id=10, title='I am a banana!')
table.upsert(data, ['id'])

Data Export

Note: Data exporting has been extracted into a stand-alone package, datafreeze. See the relevant repository here [https://github.com/pudo/datafreeze].

	
datafreeze.freeze(result, format='csv', filename='freeze.csv', fileobj=None, prefix='.', mode='list', **kw)

	Perform a data export of a given result set. This is a very
flexible exporter, allowing for various output formats, metadata
assignment, and file name templating to dump each record (or a set
of records) into individual files.

result = db['person'].all()
dataset.freeze(result, format='json', filename='all-persons.json')

Instead of passing in the file name, you can also pass a file object:

result = db['person'].all()
fh = open('/dev/null', 'wb')
dataset.freeze(result, format='json', fileobj=fh)

Be aware that this will disable file name templating and store all
results to the same file.

If result is a table (rather than a result set), all records in
the table are exported (as if result.all() had been called).

freeze supports two values for mode:

	list (default)

	The entire result set is dumped into a single file.

	item

	One file is created for each row in the result set.

You should set a filename for the exported file(s). If mode
is set to item the function would generate one file per row. In
that case you can use values as placeholders in filenames:

dataset.freeze(res, mode='item', format='json',
 filename='item-{{id}}.json')

The following output format s are supported:

	csv

	Comma-separated values, first line contains column names.

	json

	A JSON file containing a list of dictionaries for each row
in the table. If a callback is given, JSON with padding
(JSONP) will be generated.

	tabson

	Tabson is a smart combination of the space-efficiency of the
CSV and the parsability and structure of JSON.

You can pass additional named parameters specific to the used format.

As an example, you can freeze to minified JSON with the following:

	dataset.freeze(res, format=’json’, indent=4, wrap=False,

	filename=’output.json’)

	json and tabson

	
	callback:

	if provided, generate a JSONP string using the given callback
function, i.e. something like callback && callback({…})

	indent:

	if indent is a non-negative integer (it is 2 by default
when you call dataset.freeze, and None via the
datafreeze command), then JSON array elements and object
members will be pretty-printed with that indent level.
An indent level of 0 will only insert newlines.
None is the most compact representation.

	meta:

	if meta is not None (default: {}), it will be included
in the JSON output (for json, only if wrap is True).

	wrap (only for json):

	if wrap is True (default), the JSON output is an object
of the form {"count": 2, "results": [...]}.
if meta is not None, a third property meta is added
to the wrapping object, with this value.

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | Q
 | R
 | T
 | U

A

 	
 	all() (dataset.Table method)

B

 	
 	begin() (dataset.Database method)

C

 	
 	columns (dataset.Table attribute)

 	commit() (dataset.Database method)

 	connect() (in module dataset)

 	
 	count() (dataset.Table method)

 	create_column() (dataset.Table method)

 	create_index() (dataset.Table method)

 	create_table() (dataset.Database method)

D

 	
 	Database (class in dataset)

 	delete() (dataset.Table method)

 	
 	distinct() (dataset.Table method)

 	drop() (dataset.Table method)

 	drop_column() (dataset.Table method)

F

 	
 	find() (dataset.Table method)

 	
 	find_one() (dataset.Table method)

 	freeze() (in module datafreeze)

G

 	
 	get_table() (dataset.Database method)

I

 	
 	insert() (dataset.Table method)

 	
 	insert_ignore() (dataset.Table method)

 	insert_many() (dataset.Table method)

L

 	
 	load_table() (dataset.Database method)

Q

 	
 	query() (dataset.Database method)

R

 	
 	rollback() (dataset.Database method)

T

 	
 	Table (class in dataset)

 	
 	tables (dataset.Database attribute)

U

 	
 	update() (dataset.Table method)

 	
 	upsert() (dataset.Table method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 dataset: databases for lazy people

 		
 Installation Guide

 		
 Quickstart

 		
 Connecting to a database

 		
 Storing data

 		
 Using Transactions

 		
 Inspecting databases and tables

 		
 Reading data from tables

 		
 Running custom SQL queries

 		
 API documentation

 		
 Connecting

 		
 Notes

 		
 Database

 		
 Table

 		
 Data Export

_static/down.png

_static/dataset-logo.png
dataset

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/knight_mozilla_on.jpg
knight-mozilla

OpenNews

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

